目的 研究硫辛酰胺与硫辛酸在体外Caco-2细胞单层模型的转运。方法 采用MTS法考察硫辛酰胺与硫辛酸对Caco-2细胞存活率的影响;考察硫辛酰胺与硫辛酸在肠腔侧(apical side,AP)与基底侧(basolateral side,BL)的双向转运,计算累计转运量,表观渗透系数(Papp)及转运百分比,进一步探究转运量与浓度和时间之间的关系。结果 硫辛酰胺与硫辛酸转运量与浓度和时间呈依赖性增加,AP→BL硫辛酰胺与硫辛酸Papp值分别为2.443 44×10-5~2.392 91×10-5、8.179 78×10-6~7.897 25×10-6 cm·s-1,BL→AP硫辛酰胺与硫辛酸Papp值分别为2.258 13×10-5~2.214 3×10-5、 8.267 98×10-6~7.926 73×10-6 cm·s-1。结论 在Caco-2细胞的转运实验中硫辛酰胺优于硫辛酸,提示其口服吸收好,生物利用度高,但仍需体内药动学数据的验证。
Abstract
OBJECTIVE To study the transport of lipoamide (LAM) and lipoic acid (LA) in Caco-2 cell monolayer model in vitro. METHODS Effects of LAM and LA on the survival rate of Caco-2 cells were investigated by MTS, the bi-directional transport of lipoamide and lipoic acid from the intestinal cavity side (apical side, AP) to the basal side (basolateral side,BL) was investigated. The cumulative transport volume, apparent permeability coefficient (Papp) and transport percentage were calculated,and the relationships between transport volume and concentration and time were further studied. RESULTS The transport amounts of LAM and LA were increased in time-and concentration-dependent manners, the Papps of LAM and LA (AP→BL) were 2.443 44×10-5-2.392 91×10-5 and 8.179 78×10-6-7.897 25×10-6 cm·s-1, and the Papps(BL→AP) were 2.258 13×10-5-2.214 3×10-5 and 8.267 98×10-6-7.926 73×10-6 cm·s-1, respectively. CONCLUSION In the transport test of Caco-2 cells, LAM is superior to LA, suggesting that it is well absorbed orally and has high bioavailability. But it is still necessary to verify the pharmacokinetic data in vivo.
关键词
硫辛酰胺 /
硫辛酸 /
Caco-2 /
转运 /
表观渗透系数
{{custom_keyword}} /
Key words
lipoamide /
lipoic acid /
Caco-2 /
transport /
apparent permeability coefficient
{{custom_keyword}} /
中图分类号:
R965
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHEN Y, WANG J Y, JIA X B, et al. Role of intestinal hydrolase in the absorption of prenylated flavonoids present in Yinyanghuo[J]. Molecules, 2011, 16:1336-1348.
[2] ARTURSSON P, PALM K, LUTHMAN K.Caco-2 monolayers in experimental and the oretical predictions of drug transport[J]. Adv Drug Deliv Rev, 2001, 46(13):27-43.
[3] MA Y H, GUO S Y, ZHANG H F, et al. Determination of absorption and Transport of Radix Salviae Miltiorrhizae before and after compatibility with Salvia Miltiorrhiza by UPLC-MS[J]. Chin J Tradit Chin Med(中华中医药学刊),2019, 37(5):1064-1067.
[4] CUI M X, LI J L, ZHANG Z Q, et al. Application of Caco-2 cell model in pharmacology[J]. J Pharm People′s Liber Army(解放军药学学报),2009, 25(1):59-61
[5] PA L D, AB L Z,CHONG Y Y, et al. Establishment and assessment of Caco-2 cell in vitro absorption model[J]. Asia-pacific Tradit Med(亚太传统医药),2011,7(4):6-8.
[6] SZABADOS E, FISCHER G M, GALLYAS F, et al. Enhanced ADP-ribosylation and its diminution by lipoamide after ischemia-reperfusion in perfused rat heart[J]. Free Radic Biol Med, 1999, 27(9-10):1103-1113.
[7] SHEN W L, HAO J J, FENG Z H, et al. Lipoamide or lipoic acid stimulates mitochondrial biogenesis in 3T3-L1 adipocytes via the endothelial NO synthase-cGMP-protein kinase G signalling pathway[J]. Br J Pharmacol, 2011, 162(5):1213-1224.
[8] LI X S, LIU Z B, LUO C, et al. Lipoamide protects retinal pigment epithelial cells from oxidative stress and mitochondrial dysfunction[J]. Free Radic Biol Med, 2008, 44(7):1465-1474.
[9] ZHAO L, LIU Z B, JIA H Q, et al. Lipoamide acts as an indirect antioxidant by simultaneously stimulating mitochondrial biogenesis and phase Ⅱ antioxidant enzyme systems in ARPE-19 cells[J]. PLoS One, 2015, 10(6)DOI:10.1371/journal.pone.0128502:e0128502.
[10] PERSSON H L, SVENSSON A I, BRUNK U T. Alpha-lipoic acid and alpha-lipoamide prevent oxidant-induced lysosomal rupture and apoptosis[J]. Redox Rep, 2001, 6(5):327-334.
[11] MAO Y W, WANG Y Y, ZHANG X H, et al. Effects of lipoamide on TAK1 activity and SnoN protein stability in renal tissue of diabetic rats[J]. Acta Nutr Sin (营养学报), 2018, 40(1):47-52.
[12] PATIL A G, REDDY D, SOUZA D, et al. Development and validation of RP-HPLC-fluorescence method for quantitative determination of quinidine, a probe substrate for P-glycoprotein inhibition assay using Caco-2 cell monolayer[J]. Biomed Chromatogr, 2010, 24(6):620-625.
[13] LI H, LI J, LIU L,et al. Elucidation of the intestinal absorption mechanism of celastrol using the Caco-2 cell transwell model[J]. Plan Med, 2016, 82(13):1202-1207.
[14] LI X J, CAO Y D, HE K Y. Establishment and verification of absorption model of Caco-2 cells in vitro[J]. Her Med(医药导报),2018, 37(11):1311-1315.
[15] ZHOU B, WEN M, LIN X, et al. Alpha lipoamide ameliorates motor deficits and mitochondrial dynamics in the Parkinson′s disease model induced by 6-hydroxydopamine[J]. Neurotox Res, 2018, 33(4):759-767.
[16] HU Y M, XIONG L, HUANG T, et al. Synthesis and characterization of lipoamide[J]. J South-Central Univ Natl(Nat Sci Ed)(中南民族大学学报:自然科学版), 2008, 27(4):13-15.
[17] GAO K,SUN J, HE Z G, et al. Important application of Caco-2 cell monolayers in the study of the intestinal oral absorption[J]. J Shenyang Pharm Univ(沈阳药科大学学报),2005, 22(6):469-474.
[18] CAI J, ZHANG L, PENG J G, et al. Study on the transport mechanism of tretinoate A in Caco-2 cell monolayer model[J]. Chin Pharm J(中国药学杂志), 2018, 53(10):793-798.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
贵州省科技厅贵州省高层次创新人才培养项目资助[黔科合人才(2016)4015号];贵州省科技厅重点项目资助(黔科合JZ字[2015]2001号);贵阳市科技计划项目资助(筑科合同[2017]5-7号)
{{custom_fund}}